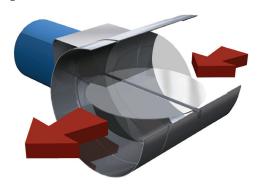
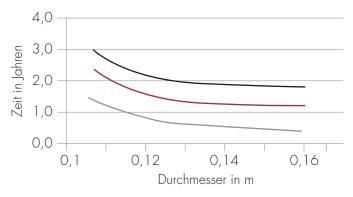

MOTORISCHE ABGASKLAPPEN


Intelligente Lösungen für Abgas- und Heizungstechnik

MOTORISCHE ABGASKLAPPEN

FUNKTION


Motorisch gesteuerte Abgasklappen können für alle Öl- und Gasfeuerstätten mit oder ohne Gebläse sowie für Festbrennstofffeuerstätten eingesetzt werden. Im Gegensatz zu der thermischen Diermayerklappe öffnet sie bereits vor Inbetriebnahme des Brenners. Während der Stillstandszeiten der Feuerstätte verschließt sie den Abgasweg und verhindert das Entweichen von aufgeheizter Raumluft und das Auskühlen der Feuerstätte. Die motorische Ausführung kann in verschiedenen Variationen gesteuert werden, z. B. manuelle Steuerung über einen Netzschalter, temperaturabhängige Steuerung über einen vorgeschalteten Thermostat oder vollautomatisch über eine Ofenregelung.

ENERGIEEINSPAREN MIT ABGASKLAPPEN

Je nach Feuerstätte und den äußeren Umständen kann der Energieverlust durch abströmende Raumluft über 4.000 kWh im Jahr betragen. Dieser Verlust wird durch Abgasklappen verhindert. Sie werden zwischen Ofen und Schornstein eingesetzt und verschließen den Abgasweg zum Schornstein, sobald er nicht mehr benötigt wird. Der Verschluss wird über einen Stellmotor betätigt. Die daraus resultierenden Energie- und Brennstoffeinsparungen können die Kosten für den Einbau schnell amortisieren. Je nach Abgasklappe, Ort und Schornsteindurchmesser errechnen sich Amortisationszeiten, die Sie dem nachstehenden Diagramm entnehmen können.

AMORTISATIONSZEIT

■ Regensburg 1,9 m/s; cp=0,55 ■ Würzburg 3,2 m/s; cp=0,75 ■ Bremerhaven 5,2 m/s; cp=0,77

Aus dem Diagramm lässt sich der Zeitraum entnehmen, in dem sich die Kosten für den Einbau einer motorischen Abgasklappe durch die erzielte Einsparung aufheben. Das Sparpotenzial ist von vorherrschenden Wetterverhältnissen abhängig, die hier durch Standorte berücksichtigt worden sind.

VORTEILE

- ✓ Für alle Brennstoffarten geeignet
- ✓ Energieeinsparung
- ✓ Reduzierung der Stillstandsverluste
- ✓ Verhindert das Entweichen aufgeheizter Raumluft
- ✓ Verhindert das Entweichen der im Ofen gespeicherten Wärme
- ✓ Verbesserung der Gebäudeenergiebilanz
- ✓ Vermeidung von Abgasrückströmungen
- ✓ Umweltschutz durch verminderte Emissionen
- ✓ Reduzierung des Brennstoffverbrauchs
- ✓ Kurze Amortisationszeiten

Annahmen

BEISPIEL JÄHRLICHER LÜFTUNGSVERLUSTE VON GASSPEZIALHEIZKESSELN

Eingaben Zetawerte

Eingaben/Annahmen Verbindungsstück:

Gestreckte Länge	1 m Strömungssicherung					3,0					
Wirksame Höhe	0,3 m Böç			Bögen und SS-Eintritt							
Eingabe Schornsteindaten											
Schornsteinhöhe	1	Edelst	Edelstahl, Aluminium, Kunststoff								
Schornsteindurchmesser		0,	2 m	Schan	0,002						
Schornsteinrauigkeit		0,00	2 m	Gema	0,005						
Rohrreibungszahl	0,048										
Eingabe Win	en		Eing	ı							
Mittlere Windgesch	ceit 5,2 m/s Gesamtfu			ntfugenlänge	ugenlänge						
Anströmbedingung	rt) O	,77	Fugendurchlasskoeffizient a			0,6					
Laststufe		ere Luftte				re Schorr					
	tur i	m Schorr	ıstei			ttstemper	atur 22°C				
13 %				24 °(_						
30 %	<u> </u>			25 °		23 °C					
39 %	<u> </u>			26 °	-	24 °C					
48 %				27 °C			25 °C				
63 %				28 °		26 °C					
Laststufe		13%	,	30%	39%	48%	63%				
Mittlere Luftdichte im Schornstein		1,187		1,183	1,179	1,175	1,172				
Unterdruck durch Auftrieb in Pa		6,200		9,300	11,200	13,100	16,200				
Unterdruck durch Windanströmung in Pa		13,000	1	3,300	13,400	13,600	13,900				
Gesamtunterdruck in Pa		19,200	2	2,600	24,600	26,700	30,000				
Volumenstrom in m ³ /h		140,000	14	8,000	152,000	156,500	163,000				
Lüftungsverluste in kW		0,590		0,959	1,182	1,429	1,825				
Lüftungsverluste in kWh		1.477,710	81	0,520	685,680	578,760	401,490				

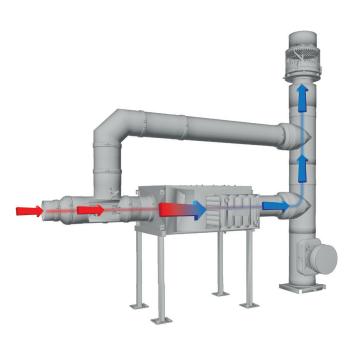
► Gesamtverluste: 3954,16 kWh/Jahr

ABGASWEICHEN

Die wartungsfreie Abgasweiche ist eine zusätzliche Sicherheitseinrichtung, um Abgase an einem bestimmten Bauteil strömungsgünstig umzuleiten. Dadurch können Wartungsund gegebenenfalls Instandhaltungsarbeiten zu jeder Zeit am Bauteil durchgeführt werden.

Die Abgasweiche findet Ihren Einsatz, z. B. bei Abgaswärmetauschern, um im Nichtgebrauch die Abgase am Register umzuleiten. Die Regelung TJ-HRC überwacht die Temperaturen im Wärmetauscher-Register und schaltet die Abgasweiche automatisch.

Abgasweiche N1, metallisch dicht schließend für Unterdruckabgasanlagen ohne Kondensatanfall.

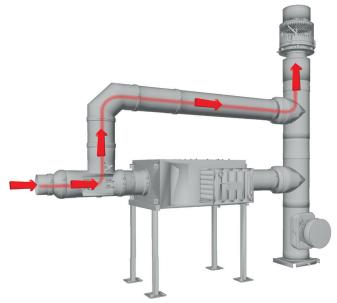

- ✓ Für Abgastemperaturen bis 400 °C
- ✓ Integrierter Endschalter
- ✓ Metallisch dichtend

Abgasweiche P1, zur externen Bypassführung der Abgase. Metallisch dicht schließend für Unter- und Überdruckabgasanlagen.

- ✓ Für Abgastemperaturen bis 400 °C
- ✓ Integrierter Endschalter
- ✓ Metallisch dichtend
- ✓ Druck- und kondensatdichte Wellendurchführung
- ✓ Überdruckdicht bis 200 Pa nach außen

Abgasweiche H1, zur externen Bypassführung der Abgase. Metallisch dicht schließend für Überdruckabgasanlagen bis 5.000 Pa.

- ✓ Für Abgastemperaturen bis 400 °C
- ✓ Integrierter Endschalter
- ✓ Metallisch dichtend
- ✓ Druck- und kondensatdichte Wellendurchführung
- ✓ Überdruckdicht bis 5.000 Pa nach außen



Normale Nutzung des Wärmetauschers

Umleitung über Bypass

TECHNISCHE DATEN

	MOK	MOK AD	MUK	MUK D	MUK DK mit Kastensicke	MUK LAS	MUK HP	
Max. Temperatur	bis 400 °C	bis 400 °C	bis 200 °C mit Graphit- dichtung bis 400 °C	bis 120 °C	bis 120 °C	bis 120 °C	bis 400 °C	
Unter-/ Überdruck	Unterdruck	Unterdruck	Unter-/ Überdruck	Unter-/ Überdruck	Unter-/ Überdruck	Unter-/ Überdruck	Unter-/ Überdruck	
Druckdicht nach außen	x (N1)	x (N1)	200 Pa (P1)	200 Pa (P1)	200 Pa (P1)	200 Pa (P1)	5.000 Pa (H1)	
Innere Dichtigkeit	*	*	*	Leckrate max. 2001/h bei +100 Pa nach DVWG-Arbeits- blatt G 635	Leckrate max. 2001/h bei +100 Pa nach DWVG-Arbeits- blatt G 635	Leckrate max. 2001/h bei +100 Pa nach DVWG-Arbeits- blatt G 635	×	
Durchmesser	80–1.000	80–1.000	80–1.000	80, 100, 110, 125, 150, 180, 200, 250, 300, 400	80, 110, 125, 160	80/125, 100/150	80–400	
Anwendungs- bereich	Für Unterdruck- abgasanlagen ohne Kon- densatanfall, Geräte mit Zündflamme oder Fest- brennstoffe	Für Unter- druckabgas- anlagen ohne Kondensat- anfall	Für Über- und Unterdruck- abgasanlagen mit Kondensat- anfall oder Kaskadenan- lagen mit Kon- densatanfall	Für Unter- und Überdruckab- gasanlagen mit Konden- satanfall für erhöhte Dich- tigkeitsanfor- derungen	Für alle gängigen Kunststoffab- gassysteme	Für LAS- Systeme	Für Industrie und BHKVV	
Klappenart	Mit Mindest- öffnung	Metallisch dicht	Metallisch dicht	Mit Elastomer- dichtung	Mit Elastomer- dichtung	Mit Elastomer- dichtung	Metallisch dicht	